Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics.
نویسندگان
چکیده
Two types of glial fibrillary acidic protein-positive (GFAP+) astrocytes were found in cultures of developing rat optic nerve. Type 1 astrocytes had a fibroblast-like morphology, did not bind tetanus toxin or the monoclonal antibody A2B5 (both of which bind to specific polysialogangliosides), and were stimulated to divide by an extract of bovine pituitary and by epidermal growth factor (EGF). Type 2 astrocytes had a neuron-like morphology, bound tetanus toxin and A2B5 antibody, and were not stimulated to divide by bovine pituitary extract or by EGF. Although both types of astrocytes were present in cultures of white matter, only type 1 astrocytes were found in cultures of gray matter. Astrocytes did not convert from one type to the other in culture: while many type 1 astrocytes adopted a neuron-like morphology when exposed to dibutyryl cyclic adenosine 3':5'-monophosphate, or pituitary or brain extracts, especially in serum-free medium, such morphologically altered cells did not bind tetanus toxin or A2B5 antibody. Although small numbers of tetanus toxin-binding, A2B5+, GFAP+ cells were present in suspensions of freshly dissected, neonatal optic nerves, most of the type 2 astrocytes in cultures of such optic nerves developed from tetanus toxin-binding, A2B5+, GFAP- cells, which were induced to express GFAP by the culture conditions. Since type 2 astrocytes have a neuron-like morphology and bind tetanus toxin and A2B5 antibody, these ligands cannot be used on their own as neuron-specific markers in central nervous system cultures.
منابع مشابه
Gangliosides alter morphology and growth of astrocytes and increase the activity of choline acetyltransferase in cultures of dissociated septal cells.
Administration of gangliosides has been reported to stimulate regeneration of motoneurons and of central dopaminergic and cholinergic neurons. To shed light on the mechanism by which gangliosides mediate the effects on cholinergic neurons, we studied their actions on cultures of cells dissociated from the septal area of fetal rat brains. These cultures contain cholinergic neurons, which, in viv...
متن کاملAcute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملIncreased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملThe Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کاملGlial cells in the rat optic nerve and some thoughts on remyelination in the mammalian CNS.
Studies on the rat optic nerve in the past 5 years have produced two surprises. First, they demonstrated that there are two biochemically, developmentally and functionally distinct types of astrocytes in the optic nerve, and probably in white matter tracts throughout the CNS: one seems to be responsible for inducing endothelial cells to form the blood-brain barrier while the other seems to serv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 3 6 شماره
صفحات -
تاریخ انتشار 1983